Jean-Michel Vappereau's – *Fabric – Intrinsic Topological Surfaces*
translated by Marc Etlin
rough draft – 8/11/9

{341}

Table of Contents

Presentation of the series of the fascicles of results
I-XVIII

THE MIRAGE OF TOPOLOGY

To introduce...13

1. **The birth of dimension.**
a – Dimension is a topological invariant.
a' – The number of these [two] is the Imaginary.
(A) Incidence of repetition.
(A') Composition of perception and consciousness.
a'' Fabrics.

2. **Classical Mirage and Topological Mirage.**
a – Lacan and the games of dimension.
a' – The Imaginary is the body.
(A) The signifying involution.
(A') The dynamic of cuts.

3. **Passage, optics and...**
a – Intrinsic/extrinsic.
a' – The narcissisms and transference.
(A) First optical schema.
(A') Second optical schema.
(A'') Third optical schema.

4. **...the study of designs.**
a – Traits.
a' – Drawings.

PSYCHOANALYSIS WITH LACAN

Chapter I..53

ENJOYMENT AND THE INTERDICTION OF DESIRE

A knot's tension surfaces

IMAGINARY HOLE – NUMBER OF FACES

1. **Of enjoyment.**
a- Written presentation.
a' – Where enjoyment is found in the Freudian construction.
a” - Structural presentation.

2. **From swarm to fabric.**
a₁ – Construction of the tension surfaces.
Example of the Borromean knot.
a₂ – Semi-twists and folds.
Examples of the bi-folded strip and the Borromean knot.

3. **Characteristic Intrinsic Properties of a spanning surface.**
a₁ – The number of faces.
Two presentations of the trefoil knot.
a₂ – Edge number.

4. **Reduction via drawing of a spanning surface to its intrinsic characteristics.**
Operation I: deformation of the edged surfaces.
Operation II: suppression of the semi-twists by even numbers.
Operation III:
above-below exchange of the fabric ribbons. *Examples of the trefoil knot in its bilateral presentation and the Borromean knot.*

{342}

Chapter II...77

CLASSICIST FABRIC AND SURFACE FOR LACAN
Theory of intrinsic topological surfaces
EDGE NUMBER
P. Q. R. SCHEMAS

4. **Conclusion.**

Chapter III...99

THE GAME’S BIRTH
Invariants
SEMI-TWISTS AND EDGE NUMBER
OTHER INVARIANTS

1. **Apparent semi-twists of straps and edge number.**

2. **Orientable surfaces, non-orientable surfaces.**

3. **Presentation of the intrinsic invariants of topological surfaces.** a₁ – The Euler-Poincaré indicator. a₂ – Edge number. a₃ – Genus. a₄ – The fundamental group. a₅ – The standardized group.

{343}

Chapter IV..102
IN THE PLACE OF OUR BIRTH...
The breast
Imaginable hole

1. **Invariants**

2. **The sphere as a fabric without edge.** a₁ – Intension and extension on a sphere. a₂ – The graph over the sphere. a₃ – Demonstration of the incidence of repetition. 1. In the case in which consists of the R zone. 2. In the case in which the R zone is retracted, the case of the L schema.

3. **The pierced sphere.** a₁ – Attempt to construct the sphere through identification of the sides of a square. a₂ – A hole in the sphere. a₃ – Two holes on a sphere. a₄ – n holes on a sphere. a₅ – bridge from a hole to two holes. a₆ – Incidence of the holes upon the invariants.

4. **Conclusion.**

THE DESCRIPTION OF THE CAVE

Chapter V...157

THE SUBVERSION OF INTERDICTS: THE GAME AND TOPOLOGY
One feces
TORIC HOLE

1. **Invariants.**

2. **The simple torus.** a₁ – Definition. a₂ – Different presentations of toric fabric. Torus presented as a ring: an n-sphere with tubes; a 2-sphere with tubes; a sphere with one handle. a₃ – Calculus of some invariants. Calculus of the Euler-Poincaré indicator. Calculus of the fundamental group. a₄ – Toric hole. a₅ – Toric trajectories, toric knots. Calculus of the toric ties in the drawing. A meridian turn and a zero-longitudal turn. Two meridian turns and three longitudinal turns. Layour rules of the toric trajectory composed of only one link. Three meridian turns and two longitudinal turns. Three meridian turns and four longitudinal turns. Four meridian turns and five longitudinal turns. Two meridian turns and two longitudinal turns. Four meridian turns and two longitudinal turns.

3. **Multi-Tori.** a₁ – Definition. a₂ – Presentation of the multi-tori. Presentation as a composition of rings: a sphere with handles; a 2-sphere with tubes; a multi-sphere with tubes; a 2-sphere of tubes with handles. Even multi-tori. Odd multi-tori. a₃ – Multi-toric trajectories. A link over a simple torus. A link over a double torus. A link over a triple torus. Two {344} links over a simple torus. Two links over a double torus. Two links over a triple torus. Three links over a double torus. Three links over a triple torus. a₄ – Supplementarity between the multi-toric trajectories and the multi-toric graphs. a₅ – Parity from the supplementary cut to joining some multi-toric trajectories to divide the fabric into two symmetrical parts. A circle placed over the 4-torus. Two circles placed over the 4-torus. A circle placed over the 5-torus. Two circles placed over the 5-torus. The relation between genus, circles and cut. The knotting of multi-toric fabrics.

4. **Conclusion.**
Chapter VI...199
THE LARGE SIZE OF THE TORI
pierced, cut
TORIC HOLE – IMAGINABLE HOLE – FACES

1. Invariants.

2. The pierced torus. a_1 – Cuts according to the toric trajectories. Cut of a sphere with handle according to a meridian. Cut of a sphere with handle according to a longitude. Cut of a sphere with handle according to a trajectory composed by a longitude and a meridian. Trajectory that encloses the two feet of a handle. Cut reducible onto the handle of a sphere with a handle. Cut of a double torus according to a medial trajectory. The double-torus cut according to its meridians. The double-torus cut according to one of its longitudes. A meridian trajectory composed with a longitudinal trajectory on a double torus. Cut of a sphere with three handles according to a trajectory that passes underneath of a handle and between the other two. Cut of a triple torus according to a trajectory that takes a handle and revolves around the feet of the other two. Cut of the torus according to the enlacement submerged in its fabric. Cut of the torus according to the trefoil knot submerged in its fabric. Cut of a sphere with handles according to a meridian on a handle and a trajectory that encircles a foot of this handle and the two feet of the other. A sphere with handles cut down by a Whitehead knot. The triple torus cut down by a trivial chain. Cut of the triple torus according to the Borromean knot. a_2 – Cutting according to a graph.

4. Conclusion.

Chapter VII..233
THE SIGNIFYING INVOLUTION AND THE a, RELATIVE PLAY OF THE CUTS
The gaze
MœBIAN HOLE – FACES

{345}

1. Invariants.

2. The signifying involution. a_1 – L’Étoudrit's presentation. a_2 – Tarquinus' ponies.

3. The Mœbius strip. a_1 – Construction of the Mœbius strip. 1. Identification of an edge component of a bipartite strip. 2. The Mœbius strip produced through the identification of the square. a_2 – The Mœbius strip and its cuts. 1. The two types of cuts. 2. Inversion on the surface of the projective plane and the relation between the two types of cuts. a_3 – Definition of the Mœbius strip as a spanning surface of an interior eight. a_4 – The Mœbius strip and its cuts from enlacement. 1. The cut of a single turn. 2. The redoubled cut. a_5 – The other extrinsic Mœbiuses.

4. The masks.

Chapter VIII..253
THE TWISTED PERSPECTIVE
The gaze and the voice
MœBIAN HOLE – IMAGINABLE HOLE – FACES – SEMI-TWISTS
1. Invariants.

2. The intersections of strips with semi-twists.
 a₁ – The intersection of strips in which each one of them has a semi-twist.
 a₂ – The intersection in that which only one strip is folded.
 a₃ – Closing of the spherical hole of the intersection of twisted strips.

3. The pierced Möbius strip.
 a₁ – The Möbian hole.
 a₂ – Demonstration of the equivalence of the two holes.
 a₃ – Hole and Möbian zone. The hole is in the Möbian zone. The hole is against the Möbian zone.
 a₄ – Correspondence between the two constructions of the Möbius strip.

4. We would return to our semi-twists.
 a₁ – Construction of whatever kinds of fabrics.
 1. multi-intersections.
 2. A strap added to a Griffiths’ schema.
 a₂ – Assembly of a strap over any fabric.
 1. strap or point.
 2. In the case of strict straps.
 3. In the case of points.
 a – In the case of a bilateral fabric. The effectively non-twisted point. The effectively twisted point.
 a’ – On a unilateral fabric. The point without an apparent semi-twist. The point with an apparent semi-twist.

5. Dissassembly of the fabrics according to its straps.

\{346\}

THE SURFACE TOPOLOGY OF LACAN'S SCHEMAS

Conclusion..277

THE BINDING HALF-SAYING OF FABRIC

Closing of the schemas on the surface of the projective plane

IMAGINABLE HOLE

1. The R schema closed according to the surface of the pierced projective plane.
 a – Figure with the transversal cleft.
 a’ – The non-immediate figure.
 1. First median figure.
 2. Second median figure.
 a” – The transversal figure.

2. The L schema closed according to the surface of the pierced projective plane.
 a – Retraction.

3. The I schema, product of the surface of the pierced projective plane.
 a’ – Caricature: the passage from the R schema to the I schema.

REPRESENTATION IN TOPOLOGY

Appendix

Elements for a theory of representation and the object

Chapter I..303
ABSENCE AND PIT
Topologies on the surface of the projective plane

1. Topology of the trajectories submitted to continuous deformations on the surface of the real projective plane. a – Objects. a' – Transformations. Starting from a point outside of the line. The line without points.

2. Topology of the faces' colorings of fabric with a real projective plane structure. a – Objects. a' – Transformations.

Chapter II...315
THE INTELLIGIBLE CONSTRUCTION
Of the immersed presentation of non-orientable fabrics

1. Construction of the submerged model of the projective plane.

2. Relation of the immersed model and the submerged pierced model of the Klein bottle.

{347}

Chapter III...323
PSYCHOANALYSIS HAS NO SPACE FOR PRESTIGE
Lacan's schemas on the surface of the cross-cap

2. In greater dimensions.

Analytic index...329

Bibliographies
Works of Freud and writings of Lacan, accompanied with some seminars..............................333
Bibliography relative to the theory of intrinsic topological surfaces..337
Bibliography relative to the theory of dimension...337
General bibliography...338
Table of Contents..347